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1. Introduction

The first Doppler radar observations of waves and turbulence in the

stratosphere and mesosphere were reported in VHF experiments conducted

at Jicamarca, Peril by Woodman and Guilldn [1974]. Doppler radars at

frequencies near 450 and 50 MHz, and lately even at 2-3 MHz, continue to be

used in extensive studies of middle-atmosphere dynamics. They are

collectively called MST radars in view of their ability to probe parts of the

Mesosphere-Stratosphere-Troposphere region [Balsley, 1981; R6ttger,

1987]. Information about the dynamics of the medium - in terms of its bulk

velocity (v) along the radar axis, spread (av) in this velocity due to turbulence

and background wind shears, and on the intensity of refractivity fluctuations

(Cn 2) induced by turbulence - is obtained from the low-order moments of the

power spectrum density of radar signals. The moments of the power

spectrum density may also be obtained equivalently from its Fourier

transform, the autocorrelation function, often with reduced computations.

Indeed, the latter method was used in the early experiments at Jicamarca.

Nearly simultaneous Doppler observations along three or more beams allow

measurements of the bulk velocity vector. The measured velocity

perturbations are indicative of atmospheric wave-like phenomena. Velocities

along coplanar beams, symmetrically offset from the vertical, provide a

direct measurement of the vertical momentum flux in the middle atmosphere

[Vincent and Reid, 1983]. Power spectrum density is once again of interest in

data analysis of time series {v[k]; k=l,2,3...K} of velocity components v, as it

yields information about gravity-wave events [Rastogi and Woodman, 1974]
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and on the almost turbulence-like ensemble of atmospheric waves [Balsley

and Carter, 1982].

In this lecture we review the correlation and spectral analysis methods for

uniformly-sampled stationary random signals, estimation of their spectral

moments, and briefly address the problems arising due to nonstationarity.

Some of these methods are already in routine use in atmospheric radar

experiments. Others methods based on the maximum-entropy principle and

time-series models have been used in analyzing data, but are just beginning to

receive attention in the analysis of radar signals [Klostermeyer, 1986]. These

methods are also briefly discussed.

We begin with a recapitulation of random signals (or processes) in Section 2.

Several definitions used in the later sections are also introduced here. The

nature of radar signals, with several different sampling time scales, and the

contribution of unwanted components e.g. system noise and ground clutter, is

outlined in Section 3. In Section 4, white Gaussian noise is used as a

prototype to illustrate the salient statistical properties of the periodograrn,

obtained via the squared discrete Fourier transform (DFr). Use of the time-

averaged periodogram to estimate the power spectrum density (PSD or

power spectrum) of a wide-sense stationary signal is also discussed. In

Section 5, methods for estimating the autocorrelation function (ACF) as

lagged-product sums, and indirectly through the DP'T, are introduced. We

emphasize in Section 6 that, for nonstationary signals, the time-averaged

periodogram may give a severely distorted estimate of the power spectrum

and is not simply related to the true ACF via the Fourier transform. Use of

windows or normalized weighting functions to improve the statistical

properties of the PSD estimates is discussed in Section 7. The need for

windowing and trend removal in spectral analysis of nonstationary signals,

"and the consequences of coherent integration are also discussed. Spectral

parameters or moments can be estimated either directly, or by fitting an

assumed shape (e.g. Gaussian or Lorenzian) tothe spectral components by

using a minimum mean squared error criterion. These fitting methods are

discussed in Section 8. An efficient way of estimating the spectral moments

from derivatives of the ACF at zero lag is discussed in Section 9. Limitations

of this two-pulse technique, so called as a sequence of two closely-sapeed
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pulses suffices for obtaining the ACF derivatives, are also noted. Finally,

high-resolution spectral-analysis methods based on maximizing the entropy

for given ACF or data values, and through autoregressive moving-average

models of the time series, are briefly introduced in Section 10.

2. Random Simaals: Recapitulation and Definitions

In this section we review the salient concepts for wide-sense stationary

random signals and introduce the definitions of the autocorrelation function

(ACF), the power spectrum density (PSD) and spectral moments, and the

notion of an estimate. An overall familiarity with the material of this section

is assumed. The following recapitulation serves also the purpose of

introducing the notation and other definitions used later. Further details may

be found in standard engineering texts on random processes [e.g. Davenport

and Root, 1958; Papoulis, 1983] and signal analysis [e.g. Steams, 1975;

Oppenheim and WilIsky, 1983; Brigham, 1988].

Random Signals Suppose we perform some chance experiment E with

outcomes and events def'med as points (_) and subsets in a sample space S. A

random signal or process g(t,_) is a mapping of these points _ to real

functions of some independent variable, usually taken as the time (t) or some

spatial coordinate. The dependence on _ is usually implied, hence g(t,_) is

often written as g(t). By a random process g(t) we mean the ensemble of all

time functions {g(t,_)} with chance outcomes _ in the sample space S [see

Fig. 2.1]. For a given t, g(t) is merely a random variable. Associated with the

random process g(t) are the joint probability density functions of successive

orders at times (tO, (tl,t2), (h,t2,t3) etc.. This allows one to form statistical

averages or moments of various products such as g(t_), g(t_)g(t2),

g(t0g(t2)g(t3) etc.. Statistical averaging implies averaging over the entire

sample space, i.e. over the ensemble (g(t,_)}, with respect to an appropriate

probability density function.

Stationarity An important class of processes that we deal with has joint

densities and averages that do not depend on the choice of the time origin.

Such random signals are called statistically stationary, or simply stationary.

The statistical average or expectation E[g(t)]=_(t)=_ of a stationary process
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S, sample space of a chance Random process g(t)

experiment E as an ensemble (g(t, _ ) )

FIGURE 2.1. A random process g(t) as an ensemble of time functions
corresponding to the outcomes (4) in a sample space (S) for some chance

experiment E. A suitable probability assignment is defined over S. Averages
may be defined in two different ways as discussed further in the text. The

time average m(_n) of a realization g(t,_n) is obtained by averaging it over a
time window (-T/2,T/2) which is eventually made infinitely wide. The

ensemble average I_(t) is obtained by statistical averaging at some fixed time t

over all realizations. If the process is stationary and ergodic, then _t(t) is

independent of t, m(_n) is independent of n, and the two averages are equal.
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g(t), evaluated with respect to the density function associated with it at time t,

does not depend on t. Its ACF is the second moment defined as the expectation

Rg(tht2)=E[g(tl)g(t2)]=Rg(t2-tl)=Rs(x) of the product g(h)g(t2) of its values

at times h and t2=tl + x, and it depends only on the time lag x=-t2-tl. In a strict

sense, stationarity requires that similar conditions should hold for the joint

probability densities and moments (or correlations) of all orders. We limit

ourselves only to wide-sense stationary processes for which stationarity holds

for any two times (h,t2), the average value _tgis a constant, and the ACF Rg(x)

depends only on the time lag x.

Time Averages and Ergodicity A single realization or sample function

g(t,_) may be averaged in time over an interval (-T/2,+T/2) or (0,T) of

duration T. In a time averaged sense, the mean value of g(t,_) may be

obtained as mg.T(_) = <g(t,_)>r and its ACF as rg.r(x) = <g(t,_)g(t+ x,_)>r.

Higher order averages may be similarly defined. The dependence on the

interval duration T is removed by letting it become infinitely wide in the

limit. In this limit, < >-r is denoted by < >. We then find that the time averages

ms(C) and rs(x,_) depend on the identity _ of the realization. Do time averages

equal statistical averages? Usually not, but if they do then we say that g(t) is

an ergodic process. An ergodic process must also be stationary. For an

ergodic process, moments can be obtained as time averages over just one long

(ideally, infinitely long) realization, as though different segments of the

realization correspond to different members in the ensemble. The concept of

ergodicity originated in statistical mechanics where it holds well for systems

with a large number of molecules. Ergodicity is a useful assumption for

atmospheric radar signals, but it is often quite difficult to verify.

Gaussian Processes A Gaussian process is one for which the first, second,

and higher order probability density functions are jointly Gaussian. These

processes are of interest for several reasons. First, it follows from the central

limit theorem that a linear combination of many statistically independent

identically distributed random variables tends to become Gaussian. In

atmospheric radar experiments the scattered signal often arises from many

small independent scatterers, hence its probability density functions

approaches Gaussian. Exceptions occur when there are only few dominant

components, due e.g. to coherent reflections from facets of turbulent layers
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or from irregular terrain. Second, the joint probability density functions of

any order for a Gaussian process can be expressed in terms of a correlation

matrix R, i.e. from a complete knowledge of its ACF. Finally, uncorrelated

Gaussian variables are also statistically independent. This implies that if the

ACF Rg(x) of a zero-mean Gaussian random process g(0 vanishes for x > x,"

then successive segments of a realization g(t,;) over windows (0,T),

(T,2T) .... etc of duration T >> xa become uncorrelated, therefore statistically

independent. In essence, a Gaussian process whose ACF has a f'mite.support is

also ergodic. Uncorrelatedness does not usually imply independence for non-

Gaussian random variables and processes.

Complex Processes In radar experiments, the low-pass receiver output z(t)

following coherent detection is a complex signal in the following sense. It

comprises an in-phase part x(t) after demodulation the received signal with a

reference carrier cos(2_:fot), and a quadrature component y(t) after a similar

demodulation with the orthogonal reference -sin(2rffot). Since both x(t) and

y(t) exhibit random fading, the signal z(t)=x(t)+ty(t), where t=_/-1, can be

regarded as a complex random process [see e.g. Papoulis, 1983, or Miller,

1974]. The probability density of z(t) is simply the joint density function of

{x(t),y(t)}. Higher-order densities are similarly defined as joint densities of

x and y at times (tl,t2), (tl,t2,t3), etc. Statistical averages of a complex random

process are defined with respect to these densities, but may also be evaluated

as time averages under the ergodic assumption for a stationary process. Then

the mean or average of the process z(t) is a complex constant (_+trl). The

autocorrelation function may then be obtained in either of the following

equivalent ways

Rz(x) = E {z(t)z*(t+x) } = rz(X) = <z(t,_)z*(t+x,_)> [2.1 ]
Rz ensemble average (independent of t), rz time average (independent of _)

where * denotes the complex conjugate. Different ordering of the lagged

term and conjugation gives three other forms, but we use the one above. The

signal power Pz defined as <z(t)z*(t)> is real, but the autocorrelation function

Rz(x) is generally complex. It may be expressed in the cartesian form as

Rz(x)=R=(x)+tR_y(x), or in the polar form as R_(x) = IRz(x)l exp{t_z(x )}. It is

readily seen that Rz(x) has a Hermitian symmetry, i.e.



190

Rz(x) = R_(-x) [2.2]

which implies that its realpart R=(x) and magnitude IRz(x)l are even, but the

imaginary part R_(x) and phase _z(x ) are odd in the time lag x.

The Wiener-Khintchine theorem relates the ACF Rdx) and the PSD Sz(f) of

z(t) as a Fourier transform pair (see e.g. Whalen, 1971; Miller, 1974),

Sz(f) = B {Rz(x)} = _ Rz(x) exp(-t2rffx) dx [2.3]

Rz(x) = 5-1{Sdf), = _. Sz(f) exp(t2rff'0 df [2.4]

The signal power or variance Pz=<Z(t)z'(t)>=Rd0) is obtained by integrating

the PSD Sz(f) over the entire frequency range. Since the power in each

frequency band (f,f+_Sf) must be real and non-negative, we infer that the PSD

Sz(f) must also be real and non-negative everywhere.

Periodogram Each realization of the complex random signal z(t) is a

deterministic signal. We assume that it has a Fourier transform Z(f). Its

energy spectrum is obtained as Edf) = iZ(f)l 2. By the Rayleigh energy

theorem, the signal energy can be obtained either as the time integral of lz(t)l 2

or as the frequency integral of IZ(f)l 2. It follows that for signals of finite

power P_, the PSD Sz(f) may alternatively be obtained as the time average of

IZ(f)l 2 over an interval (0,T) as T becomes infinite. Signals with infinite

energy or power may be handled by including generalized functions e.g. the

Dirac impulse. Consider now a truncated signal zT(t) which is zero outside

the interval (0,T). Then

T-ll_[ZT(t)]12 = T-11Z_,r(f)12

and the right hand side has properties similar to the PSD S_(f). It is called the

periodogram or sample spectrum. The time-averaged periodogram is often

used as an estimate of the power spectrum. The importance of periodogram

in power-spectrum estimation of uniformly sampled signals is due mainly to
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the availability of efficient Fast Fourier Transform (FFT) algorithms for

computing the DFT [see e.g. Cooley et al. 1977; Brigham, 1988]. As we see

later, the use of time-averaged periodogram as a power-spectrum estimate

requires several assumptions which do not always hold for atmospheric radar

signals and data.

Spectral moments Radar signals scattered form the atmosphere are slightly

Doppler shifted due to bulk atmospheric motions, and also undergo a

Doppler broadening due to local fluctuations in the bulk velocity. In the

absence of other components in the complex signal z(t) at the receiver

output, the PSD Sz(f) has a symmetric off-center peak. The area under the

peak corresponds to the signal power P, its location or center frequency fez

to the Doppler shift fd, and its width ¢_f_about the center frequency fcz to the

Doppler frequency spread Cw. We note that, except for normalization to unit

area, the PSD Sz(f) shares all the properties of a probability density function.

Hence the location parameters that we seek may be derived from spectral

moments, defined almost identically to the moments E{Q k} of a random

variable Q, with respect to its probability density function fQ(q).

The first few noncentral spectral moments of z(t), denoted here by s_(O),s_0),

s_(2) are are obtained by averaging fo, in, and f2 with respect to its PSD S_(f)

over all frequencies. The zeroth moment sz(O)is the same as signal power P_.

S_(f)/P_ is then a probability density function. The location parameters fez and

squared width (¢_fz)2 are obtained in the sense of mean and variance (or the

second central moment) of S_(f)/P_. These may also be derived by

transforming s_(1) and s_(2) as follows. First, sz(l) and s_(2) are normalized by

dividing with s_(O) i.e.

szO) --, s_O)/s_(O)--fez and s_(2)--, s_C2)/s_(O).

Next s,(2) is modified as

sz(2) [s C2)- {s o)12]= (toO2.

A Doppler shifted peak of Gaussian shape P_ N(fcz,Cf 2) is fully specified by

the (central) spectral moments P,, fcz, and or_2 as shown in Fig. 2.2.
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5.

_-P_ exp [_(f_f[,)2] Total area under= thepeak Pz

S_(f ....... , .... , .... , .... , .... , ..... ...., .... ,

L 24,J

3. Centerfrequency f_z../...I kk

2.

't
0 ! ......

freq_r_yf 0 fc,-af,fez fez+afz

FIGURE 2.2. Power spectrum density and the corresponding spectral

moments for an off-center Gaussian spectral peak. Parameters Pz, fez, and t_ez

define the shape of the peak through its area, center frequency and standard
deviation. These parameters also correspond to the zeroth, first and second
order normalized spectral moments Sz(0), SzO), and sz(2) interpreted as signal
power, Doppler frequency shift and Doppler frequency spread. Note that the

frequency spread is acz, whereas sz(2)equals (_=)2.
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If the signal z(t) at the receiver output contains components other than the

scattered atmospheric signal, then extra steps may be necessary to relate Pz,

fez, and ofz 2 to the signal power, Doppler shift and Doppler spread of the

scattered signal. Finally, just as the moments of a random variable may be

obtained from successive derivatives of its characteristic function at the

origin, it is possible to infer the spectral moments via the autocorrelation

function.

Estimation In statistical signal and data analysis we frequently estimate a

random quantity 0 by some function fl(0b02,.. 0,) of n data points 01,02,.. 0,.

There can be many possible estimates of 0, e.g. 01,9.2,.. t_, etc. We prefer

those that satisfy some reasonable properties viz. unbiasedness, minimum

variance, and consistency. An estimate 0 of 0 is unbiased if the statistical

average E[0-fl] of the bias or error e=0-0 is zero. An unbiased estimate 0, on

the average, neither overestimates nor underestimates 0 i.e. E[0] = E[0]. Of

all the available estimates, we also prefer the one(s) whose variance var fl is

minimum. It may often be justifiable to use a biased estimate, if it has lower

variance. Finally, when the number m of data points is made infinite, we

should expect var 0 to approach zero, otherwise taking more observations

would be futile. In that case we say that the estimate 0 of 0 is consistent. It is

often possible to obtain a theoretical lower bound on the variance of an

estimator using the Cramer-Rao inequality of statistics. An estimator that

meets this bound is called an efficient estimator.

3. Nature of Radar Signals and Radar Data.

Essential statistical characteristics of sampled radar signals and time series of

derived velocity data are summarized in this section. Choice of a suitable

spectral-analysis scheme depends critically on these characteristics and the

sampling time scales. We also take a first look at the rudiments of spectral-

analysis methods using the DFF.

In radar experiments, an amplitude and/or phase modulated pulse train is

transmitted in which each pulse has the form p(t) exp(t2rffot) at a carder

frequency fo. The carder term is removed in coherent demodulation, in
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which the received signal is effectively multiplied with exp(-t27ffot). The

receiver should optimally have a bandpass frequency response to match the

modulated pulse shape p(t). Hence the receiver bandwidth B about fo is

decided primarily by the the correlation width Tp of the pulse shape p(t). A

simple way of defining Tp is as the distance between points at which the

magnitude of the ACF Rp(x), defined as <p(t)p*(t+x)>, becomes 1/2 Rp(0).

Roughly, it corresponds to the smallest modulation time scale in p(t). Then

T o is nearly equal to the pulse duration for amplitude-modulated pulse trains,

but it is approximately equal to the baudlength Tb for binary phase-coded

pulses used in high-resolution experiments. The receiver output is sampled

in range with a time resolution Tr, which should be somewhat less than T v to

avoid undersampling. Typically, Tr is 1-10 _ts for a nominal range resolution

of 0.15-1.5 km.

The pulses p(t) in the pulse train are repeated at an interval Tl, typically

about one ms. The fading rate of the received signal is related to the nominal

Doppler frequency shift. It is, nevertheless, very much smaller than the

Nyquist frequency of ~500 Hz implied by TI. The complex signal z(t) is

therefore coherently accumulated or integrated, range by range, over I

successive pulses to obtain an effective sampling time T=I.TI. Typical value

of I may be 100 in VHF experiments and 10 for the UHF case. The receiver

output signal is thus sampled in time as the function of two indices, j and i

denoting range and time. After coherent integration, the index i is changed to

k corresponding to the coarser time scale T=I.Tr. As the signals are analyzed

separately for each range, in our subsequent analysis we need only consider a

single complex time series z[k]. A range index j and a sampling time T are

then implicit.

The complex series z[k] not only includes the scattered atmospheric signal

s[k], it also comprises a wide-band noise component n[k] due to the system

and sky noise, a very slowly fading ground clutter term c[k] due to sidelobe

returns from terrain, vegetation, weather etc., a sporadic interference

component i[k] due to unwanted transmitters in the receiver passband, and

possibly a residual d.c. or drift d[k] due to slow changes in the receiver

circuits. The drift term d[k] is easily removed. Due to the intermittent and
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sporadic nature of the unwanted interference, its identification and treatment

is done on an ad-hoc basis. The only remaining terms are s, n, and c. The

ground clutter component c[k] is the most problematic of these as it is often

nonstationary over the measurement interval.

The signal z(t) is sampled in time as z[k] = z(kT). The frequency range for its

PSD Sz(f) is then limited to the Nyquist interval F=(-0.5T-l,+0.5T-I). Any

components of Sz(f) outside F are aliased or folded back into it. Tlxe aliasing

effect is most clear-cut for the wide-band noise component n(t), originally

limited by the receiver bandwidth B >> T -1. Hence the noise component is

aliased many times over. The eventual effect is to impart a nearly flat or

white-noise platform to Sz(f), even when n(t) is nonwhite. The slowly-fading

ground clutter component should be manifest in Sz(f) as a near d.c. or very

low-frequency spike. This would be true if the measurement interval were

either too small or too large compared to the typical fading-time for the

clutter. We see later in section 6, that the clutter component usually appears

as an f-2 platform in the PSD estimate.

Only a finite number K of signal samples z[k] is generally available for

spectral analysis. The limitation on K is due to finite memory or storage in

the on-line processor. An intermediate step in estimating S_(f) is the K-

sample discrete Fourier transform (DFT) of z[k]. The DFT pair is defined as

K-1

Z[m] = [:K{z[k]} = E z[k] e-t_ where m--O,1 .... [K-l] [3.1]
k=O

K-1

z[k]=F_{Z[m]} =lm_ _ Z[m]e +t2nkm/K where k=0,1..,[K-1] [3.2]

The DFF converts K time samples of z[k]=z(kT) to K samples of its Fourier

transform Z(f), evaluated at equispaced frequency points in the Nyquist

frequency range F as Z[m]=Z(m/KT). The effect of sampling in the time

domain is to render Z(f) periodic outside the Nyquist range. Conversely, due

to sampling in the frequency domain, z(t) is also treated as periodic, with a

period KT. Thus both z[k] and Z[m] are periodic K-point sequences. Full

implications of time and frequency sampling in the DFT pair, and its
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equivalence to the continuous Fourier transform, has been discussed by

Brigham(1988). The sampled signal z[k] has a finite power, but infinite

energy. It can be shown that the following form of Parsevars relation holds

for z[k] and Z[m],

K-I K-I

E Iz[kll2 =Ki _-_IZ[m]12
k=O m=O

[3.3]

The use of DFT in estimating the PSD, Sz(f), by time-averaged periodograrns
is examined in the next section.

Spectral analysis of derived parameters, e.g. the time series of a velocity

component v[k], is also of interest here. We note that v[k] are samples of a

real random process, and the index k denotes either the time or some spatial

coordinate with a basic sampling interval. The power spectrum Sv(f) often

shows a power-law decay of the form ctf-B with a spectral index 13.Here f may

be a temporal or a spatial frequency. The power-law shape must be limited at

the low-frequency end by some frequency fL, else the power in v(t) may

become infinite for some [5. Unless the frequency fL is fully resolved, its

effect is manifest in v[k] as a non-stationary trend, similar to the ground-

clutter component c[k] in the radar signal z[k]. Implications of such trends in

spectral analysis are discussed in Section 6.

4. Time Averaged Periodggram Analysis

The sample spectrum or periodogram Pz(f) of a complex signal z(t) has

been briefly discussed in section 2. Suppose the signal z(t) is first truncated

over an interval of duration D, and ZD(f)=5 {zo(t) } is the Fourier transform

of the tnmcated signal zo(t). Then the periodogram Pz(f) is defined as

P_(f)= Di IZD(f)I2 [4.1]

In the uniformly-sampled case, zD(t) is available at K sample points spaced an

interval T apart over a total duration D=KT. For simplicity denote these

sample values by the sequence {z[k], k--0,1 .... (K-l)}. The DFT F{z[k]} of
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this sequence is another complex sequence {Z[m], m--0,1 .... (K-I)}. The K

points in Z[m] have a frequency spacing (KT) -! or (D)-_ over the entire

Nyquist frequency interval +l/(2T). The rightmost point Z[K] is excluded as

it equals Z[0] by periodicity. The periodogram in the sampled case is defined

in analogy with eqn. [4.1] as

Palm] = Kll Z[m] 12 [4.2]

The sum of Pz[m] over all m, after scaling with the frequency spacing (KT)-L

gives the signal power Pz. The distinction between the symbols used for the

periodogram Pz[m] and the signal power Pz should be noted.

In the limiting case we expect that the statistical average of the periodogram

will approach the PSD. This actually gives a physically reasonable altemative

definition for the PSD,

Sz(0 = E { limD_. _ D_ JZD(f)l2 } [4.31

The above asymptotic equality will not hold for periodogram estimated from

samples of a single short realization. Hence we briefly state the statistical and

sampling properties of the periodograrn defined in equation [4.2] as a PSD

estimator. Further details may be found in Blackrnan and Tukey(1958),

Cooley et al. (1977), Koopmans (1974), Marple (1987), and Oppenheim and

Schafer(1975).

The periodogram can be computed at any continuous frequency f. The signal

z(t), however, has been truncated beyond the interval (0,D) or, in effect, a

rectangular window has been applied to it. Hence ZD(f) is obtained by the

convolution of Z(f) with the window transform D sinc(fD). Then IZD(f)I2 is

similarly obtained by convolving IZ(f)l 2 with D2sine2(fD). The convolving

functions are modified slightly for K equispaced samples of z(t); the sine

function is now replaced with the Dirichlet kernel sin(_STK)/sin(rffT). Those

frequency component in IZ(f)_ that fall exactly at a sampled frequency

point, when convolved with sin2(_-tTK)/sin2(_T), produce a null response at
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all other sampled frequencies. Hence the periodograrn values at the sampled

frequencies tend to be uncorrelated, provided that the signal z(t) does not

have significant intermediate frequency components that fall in-between two

adjacent sampled frequencies. This fact has an important bearing in PSD

estimation for signals with a strong clutter component, or with a power-law

PSD. We also see later that this gives a singularly irregular appearance to the

periodogram.

To simplify our discussion of the statistical properties of the periodogram,

we assume that z(t) = Zx(t) +t zv(t) is a zero-mean, complex Gaussian noise

with variance 0 2 and a white or flat PSD. The signal power Pz then equals the

variance 0 2, and is divided evenly between the real and imaginary parts Zx(t)

and Zv(t) of z(t). With samples at time spacing T, the PSD Sz[m] should equal

oET. Since the DFT Z[m] is a linear combination of sample values z[k], it

follows that Z[m] is also zero mean and Gaussian. From the definition of

DFT given in eqn [3.1] and using uncorrelatedness of adjacent samples of

white Gaussian noise, it can be verified that var{Z[m]} = Ko 2 and it is evenly

divided between the real and imaginary parts Zx[m] and Zv[m] of Z[m]. We

are interested in the statistics of IZ[m]l 2 = {Zx[m] }2 + {Zv[m] }2. We note that

a chi-square random variable _n 2 with n degrees of freedom (d.o.f.) is

obtained by quadratically adding n statistically independent zero-mean

Gaussian random variables from a density N(0,s2). It has a mean ns 2 and

variance 2ns 4. It follows then that IZ[m]l 2 has simply a chi-square density

with two d.o.f.. An alternative and simpler way of arriving at the same result

is to note that IZ[m]l has a Rayleigh density, hence IZ[m]l 2 has an exponential

density, which is the same as the chi-square density with two d.o.f.. Hence

E{IZ[m]I2}=Ko 2 and var{IZ[m]12}=K2oa.These resulfi for the mean and

variance of IZ[m]12 are only slightly modified when the convolutional effect

of the Dirichlet kernel is properly conside/'ed, and are valid at least locally in

the limit of large K.

With the sampling interval T included, and by noting that the area under the

periodogram Pz(f) must equal the signal variance Pz=o 2, we see that Pz[m] is

an asymptotically unbiased estimate of PSD Sz(f) at the sampled frequencies,

with an average value o2T and a variance o4T 2. As its variance remains
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independent of the sample size, Pz[m] is an inconsistent estimate of the PSD.

The standard deviation of the periodogram is o2T, same as its mean value.

We recall that the periodogram values at adjacent sampled frequency points

are nearly uncorrelated. However, as the sample size K increases, these

points only come closer in frequency without any reduction in their standard

deviation. Hence the periodogram usually shows large fluctuations, making it

appear more and more jagged as the number K of sample points increases.

Examples of this behavior may be found e.g. in Oppenheim and Schafer

(1975) and Marple (1987). These results are approximately valid for non-

Gaussian noise, as for even modest K the central limit theorem warrants

Gaussian statistics for Z[m]. As our analysis is localized in frequency, these

results also nearly correct for signals with colored PSD. Then the

periodogram Pz[m] has its mean value and its standard deviation approach the

local PSD Sz[m] for large K.

For reasons discussed above the periodogram is perhaps the most maligned

PSD estimator. Yet, the ease and efficiency with which it can be implemented

through FFT algorithms also make it the most frequently used technique for

spectral analysis. The FFT algorithms can work in place without additional

storage, require only -K log 2 K complex multiply-adds instead of-K 2 for

direct DFT evaluation, and are modular so that repetitive and computation

intensive tasks such as bit reversal and sine-cosine computations can be

detached from the main program (see e.g. Cooley et al., 1977). The

periodogram Pz[m] becomes a usable PSD estimate only after time averaging

over many independent sequences of z[m] of length K. We show below that

its standard deviation is substantially reduced through averaging.

When M independent periodograms Pztql[m] for q=l,2., are averaged, then

each point in the averaged periodogram Qz[m] is obtained by quadratically

adding 2M zero-mean Gaussian random variables with density N(0,0.5Ka2).

The sum is normalized by division with KM, and then multiplying it with T,

to conserve the area under Qz[m] as the signal variance a 2. Hence the mean of

the averaged periodogram O_[m] becomes 02T and its variance, o'4T2/M. The

standard deviation of the time averaged periodogram is then just (_2T/_/M.

These results are approximate, but the approximations improve for larger K.

For an arbitrary PSD Sz[m], it follows that the averaged periodogram Qz[m]
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has a mean ~Sz[m] and a standard deviation ~Sz[m]/_/M. The variance of

Q,[m] tends to vanish as the number M of periodograms averaged together

increases. Hence the time-averaged periodogram is a consistent estimator of

the PSD.

We close our discussion with a relevant example. In a typical UHF radar

experiment with a 1 ms pulse repetition interval and coherent integration

over 10 pulses, 64 complex samples may be gathered in 640 ms. About 64 sec

of observations suffice for averaging over 100 periodograms. The time-

averaged periodogram has a standard deviation that is 1/_/100 or 10% of the

local PSD value. A Doppler shifted peak which occupies a sixth of the

available frequency window, and is 50% above the background noise level,

can be readily detected in the averaged periodogram. The total signal power

is only about 0.04 of the total noise power for a hypothetical triangular peak.

This corresponds to a detectable signal to noise ratio (SNR) of -14 dB with

one minute of observations. This detectability criterion may often be difficult

to attain in the presence of other dominant components. But the example

does illustrate the basic considerations.

5. Estimation of the Autocorrelation Function

An alternative approach to estimating the PSD is through the ACF, using the

Wiener-Khintchine relations stated in Section 2. These are readily modified

for the discrete case using the DFT. The ACF cannot be usually recovered

from the time-averaged periodogram estimates of PSD if the signal z(t) has a

nonstationary component, and if it does not satisfy certain ergodic conditions

that constrain the ACF to a finite support [Papoulis, 1977 and 1983; Marple,

1987]. These conditions are further examined in Section 6 for the MST radar

signals. Here we outline a direct and an indirect method of estimating the
ACF from data. The use of these estimates in PSD estimation is discussed in

Section 7.

As before, suppose z(t) is a realization of a complex, ergodic, wide-sense

stationary signal. Its samples z[k] are available at times kT for k=l,2..K.

Under the ergodic assumption, the ACF Rz(x) can be estimated as a time

average. Its estimates Rz[n] are obtained at discrete time lags nT, for indices
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Inl < N < K. The estimate Rz[n] is evaluated as averaged lagged-products of

the form z[i] z*[i+n], provided that the indices [i] and [i+n] do not exceed the

bounds on k. We consider two different estimates Rtll[n] and Rt2][n] that

differ only in the normalization :

K-n

Rill[n] =---/-- _, z[i] z'[i+n], n=O,1,..N < K
K-n _l

[5.1]

K-rl

R[21[n] -__L_ z[i] z*[i+n], n=0,1,..N < K [5.2]
K _l

The estimates for negative n may be obtained either by inter-changing the

order of products in the summations, or by using the Hermitian symmetry

(see eqn. 2.2) that Rz[n] = Rz°[n].

Only [K-n] lagged products can be formed at a lag n. The estimate RU][n]

normalizes the lagged-product sums by the their actual count [K-n]. The

second estimate R[2l[n] normalizes these sums by the number K of data points.

We may surmise that R[1][n] should be an unbiased estimate of Rz[n]. Though

R[2J[n] is biased, it becomes asymptotically unbiased as K becomes infinite.

The variance of the unbiased estimate Rill[n] increases with index n as there

are fewer products averaged. For both the estimates, the variance decreases

with increasing number K of data points, and eventually vanishes. Hence both

the estimates are consistent. To ensure that a sufficient number of products

has been averaged at each lag, we require N/K<<I, with the ratio K/N of-10

or more usually desirable [Blackman and Tukey, 1958]. The two estimates

have nearly identical properties under these conditions. The biased estimate

R[2][n] puts a triangular weight 1-1nl/K on the estimated values. This warrants

for Rt2][n] the very desirable ACF property that IRt2J[n]I<R[2][0]. The

unbiased estimate Rill[n] does not always satisfy the condition IRtll[n]l_<R[l][0].

This condition may be readily violated for small K as the variance of Rill[n]

increases with n.

For a given maximum lag index N, the lagged product-sum scheme can be

automated using two buffers of size N. New data is sequentially stored in a

data buffer, at an address which wraps around the buffer. For each new data
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point, all possible N lagged product sums are updated in the second buffer.

Normalization can be done to obtain the ACF estimate, once the data buffer

has been filled several times around. This scheme is readily adapted for real-

time multi-channel signal processing. It was first used by R. M. Harper in

1974 for real-time data acquisition with the Jicamarca radar. The scheme has

also been found quite effective for analysis of irregularly spaced data. Since

an N-point history of the time-series is always available in the data buffer, the

scheme is readily adapted for editing bad data points or outliers using e.g.

mean, variance, median, and order statistics of the data.

An alternative and faster method of estimating the ACF is through the use of

DFTs [see e.g. Cooley et al. 1977; Oppenheim and Schafer, 1975, Press et al.

1986]. We recall that the DFT of a K-point sequence z[k] is another K-point

sequence Z[m], and convolution in time domain is equivalent to a product in

the frequency domain. We also notice the similarity of ACF R[n] with the

discrete self-convolution R_[n] of z[n]

R[n] = < z[i] z*[i+n] >

Re[nl = z[n] ® z[n] = < z[i] z[n-i] >.

These operations yield (2K+l)-point sequences with zero end values. The

only difference between R[n] and Re[n] is that in convolution one of the

terms is folded in the time index i, and in ACF one of the terms is conjugated.

Hence ACF may be obtained as R[n] = z[n] ® z*[-n] using the convolution. In

the frequency domain, the DFT of R[n] is merely the product of Z[m] with

Z*[m]. The only caution that needs be exercized is that R[n], hence its DFr

must be at least 2K-points long. The method then is to augment or extend the

K-point sequence z[n] with K zeros. The 2K-point DFT's of the extended

2K-point sequences zdn] and z,*[-n] are then multiplied point by point.

Finally, the 2K-point inverse DFT gives the 2K-point periodic sequence R[n].

The estimate thus obtained is weighted by a triangle as for Rill[n]. The

method can be readily extended to the cross-correlation function (CCF)

Rxy[n] of two complex K-point sequences x[k] and y[k]. We merely note the

following relations
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Rx_y[n] = x[n] ® y[n] = < x[i] y[n-i] >.

R,_[n] = < x[i] y*[i+n] > = x[n]® y*[-n] = [:-I [ X[m] Y*[m] ]

which suggest that the K-point sequences x[n], y[n] must first be augmented

with K zeros to get the 2K-point sequences xe[n] and ydn], one of which is

conjugated and inverted in time to get yJ[-n], as was also tacitly done for the

ACF. The CCF is obtained as the inverse DFT of the point by point product

X[m] Y*[m] of the DFTs of these sequences. Averaging over several K-point

data sequences is desirable to reduce the variance of ACF and CCF estimates.

This method has several advantages over the direct ACF estimation using

lagged-product sums. The DFT (or FFT) computations can be carried out in-

situ. When 2K is of the form 2_:, the number of complex multiplies and adds

in the FFF can be made as small as -2K_:. This computational advantage

becomes quite significant even for short data sequences. The PSD estimate,

moreover, is available as an intermediate step and it is related to the ACF

estimate Rt2][n] by the DFT. However, augmenting the data sequence with

zeros also doubles the storage requirements. It is perhaps for this reason that

this method has not been used in real-time MST radar signal processing. The

declining cost of computer memory certainly favors its use.

6. Nonstationadty and Spectral Distortion

In the foregoing discussion we have assumed that the complex signal z(t) is a

wide-sense stationary and ergodic random process. Usually several sets of K

equispaced samples z[k] at sample spacing T are available from a single

realization z(t,_0). The assumption of wide-sense stationarity implies that the

low-order moments viz. the mean ttz and the variance az2 of the process are

constant, and its ACF Rz(x) depends only on the time lag x, irrespective of the

time origin. The ergodic hypothesis is invoked to circumvent statistical

averaging, by estimating these quantities as time averages over many

statistically independent sub-sets from a single realization.

A constant mean value gz contributes a platform of fLxed height _tz_tz*to the

ACF, and a single spike of height (TK)rtzgz* exactly at the zero frequency in

the K-point PSD estimate. If the mean gz is indeed a constant, then it can be
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effectively removed from z[k], rendering it a zero-mean process in further

analysis. The assumption of stationarity of mean is merely a convenient

model for the signal time series z[m]. It is readily violated in situations

described below making p.z(t) a slowly varying function of time with

discernible trends over the observation interval.

The ground clutter component c(t) in radar experiments arises due to

multiple paths to terrain seen through the antenna sidelobes. Its fading time

varies from fraction of a second to minutes due to atmospheric refraction

along the paths. When the same path is not traced back due to multiple

reflections, c(t) also has a very small Doppler shift. Fading time and Doppler

shift of c(t) critically depend on the radar frequency, radar location and on

severe weather conditions. Nonstationarity of c(t) is most serious for the

-450 MHz UHF radars. The same refractive multipath effects are nearly an

order less severe and nearly insignificant for the -50 MHz VHF radars.

Coherent reflections at near vertical incidence from planar or slightly curved

turbulent layers also produce a slowly fading component. Non-stationarity is

also evident in the velocity data v(0, especially when these are indicative of a

power-law PSD, as slow trends at time scale of several hours to several days.

Removal of a nonstationary trend _tz[k] from a single K-point sequence z[k] is

difficult unless K is very large or many contiguous K-point sequences are

available. Subtracting the mean value <z> from the points z[k] in a sequence

does not remove the trend. Gottman(1985) describes simple methods for

identifying and removing trends. These methods use averaging and

differencing at several time scales to estimate parameters of an ad-hoc linear

or quadratic trend model. Alternatively, the parameters of a low-order

polynomial that models trend can be found by computation.-intensive least-

square methods [see e.g. Hamming, 1973, Press et al., 1986].

Nonstationary trends produce a severe distortion of time-averaged

periodogram estimates obtained by DFT methods as convincingly discussed

by Sato and Woodman (1982). Due to this distortion, ACF cannot generally

be recovered from time-averaged periodogram estimates Oz[m] of the PSD.

Suppose the N-point periodogram laz[m] is formed from an N-point sequence

z[k] using its N-point DFT Z[m]. From the same sequence a (2N-1)-point
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ACF estimate Rz[n], for n ranging over +(N-l), can be formed as

<z[i]z'[i+n]>. A zero value can be added at either end. Now both Pz[m] and its

inverse DFT Pz-1[n] are periodic N-point sequences. We expect the periodic

N-point sequence Pz-1In] and the aperiodic 2N-point sequence Rz[n] to be

related. Thus Pz-l[n] is derived from Rz[n] by wrapping it around a circle

with N points indexed from 0 to (N-l). If Rz[n] is constant at all lags, or if it is

zero for Inl > N/2, then Pz-1[n] unambiguously contains all the information

about Rz[n]. However, if the support of Rz[n] exceeds +_N/2, then Pz -1[n] is

severely distorted by wrap-around and its DFT, the periodogram Pz[m], is

no longer a reasonable PSD estimate. The problem can be alleviated with the

use of a 2N-point DbrF with N-point data (extended by zero-padding) to

estimate both the PSD and triangular-weighted ACF estimate R[2l[n] as

outlined in the previous section.

An alternative way to explain the periodogram distortion is to realize that the

true PSD of the trends is a narrow spectral spike near, but not exactly at, the

zero frequency. The use of a uniformly weighted N-point sequence z[n] in

periodogram estimation smooths this spike by convolution with a squared

Dirichlet Kernel which can be approximated with sinc2(fT) for the

continuous case. The contribution of the spike thus leaks or spills over all

frequencies, and is evident at the sample points of the periodogram as an _f-2

platform. Due to sampling in time at spacing T, tails of the _f-2 platform are

also aliased into the Nyquist window (-0.5/T,+0.5/T). We discuss some ways

of containing this leakage in the next section.

7. Wirldgwing and Coherent Integration

The PSD S_[m] of an N-point sequence z[n] sampled at time steps T can be

estimated either directly from the N-point DFT Z[m] via the periodogram

P_[m], or as the Db-T of an ACF estimate Rz[n]. Use of uniform weights or the

default rectangular time window is equivalent to a circular convolution of

Z[m] or Rz[n] with the Dirichlet kernel sin(_NfT)/sin(nfr). A sinusoid of

frequency f' is seen to leak at other frequencies f in the periodogram Pz[m] as

sin2(:_N(f '-f)T }/sin2 {rc(f '-f)T }.
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This leakage eventually decays only as -(f'-f)-2. In PSD estimates obtained as

DFT of the ACF, the Dirichlet kernel produces undesirable negative ripples

whose magnitude decreases as -I(f '-f)l-1. These effects are similar to the

familiar Gibbs phenomena in the Fourier reconstruction of signals near

discontinuities. The PSD estimates can be improved by shaping the data z[n]

or ACF Rz[n] with a suitable window. Since the sampling and aliasing effects

in PSD estimation have already been considered in detail, window properties
are discussed below in terms of the continuous variables t, x, and f. The

subscript z is also dropped for clarity.

In their classical monograph, Blackman and Tukey(1958) advocated the use

of shaping the ACF R(x) by multiplication with a window or weighting

function w(x) that depends on the lag x. The windowed PSD estimate Sw(f) is

obtained by convolving the true PSD S(f) with the window transform W(f) =

{w(x) }. Sw(f) has better statistical properties due to smoothing in frequency

by W(f). To conserve the signal power R(0), lag windows w('0 used with the

ACF are normalized to have w(0)=l. Other desirable attributes of w(x) are a

smooth decaying shape as a function of time lag x, an even symmetry about

x=0, and negligible negative sidelobes in the transform W(f). Good ACF

windows are further selected to be well-behaved in frequency by requiring

that the transform magnitude IW(f)l has a small width, and a low sidelobe

level that decays sufficiently steeply with f.

A data window d(t) can be directly applied as a weighting function to the

signal z(t) before periodogram analysis. The windowed periodogram

estimate PD(f) is now obtained by convolving S(f) with the squared window-

transform ID(f)12. Data windows share nearly all the properties of ACF

windows, now stated in terms of d(t) and ID(f)l 2. The only major differences

are that d(0) need not be 1, the PSD estimates with data windowing are

always non-negative, and the signal power is modified because z(t) is scaled

by d(t). Due to peaked shape of a data window d(t), the values of z(t) near the

end points are not fully utilized. For this reason, as much as half of one set of

K points of z[m] can be used with the next set. This method of data

windowing with partially overlapping data segments has been described by

Welch (1967), who also discusses the statistical properties of the windowed

time-averaged periodogram.
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A very complete description of many windows, their transform properties,

and criteria for their selection has been compiled by Harris (1978).

Corrections to some of these are given by Nuttal(1981) who also discusses

sidelobe properties of some preferred windows. Rabiner et al. (1979) give

code for generating a few frequently used windows, including yon Hann,

Hamming, Kaiser and Dolph-Chebyshev. The Dolph-Chebyshev window

attains a uniform sidelobe level and is described through its transform W(f).

The Kaiser window is a time-domain approximation to this window in terms

of the modified Bessel function Io(x) of zeroth order. These windows are

nearly ideal for data-processing applications.

Some of the simpler windows are given below as lag windows w(t) for a

support (-0.5,+0.5) of t. The rate at which their sidelobes in IW(f)l eventually

decay with f is also indicated.

Hamming

von Harm (or Harming)

Approximate Blackman

w(t) = 0.54 + 0.46 cos(2gt) _f-I

w(t) = 0.50 + 0.50 cos(2_t) ~f-3

w(t) = 0.42 + 0.50 cos(2gt) + 0.08 cos(4_rt) _t"-3

The Hamming window minimizes the first sidelobe for a simple cosine shape

but its transform decays as ~f-1 due to the rectangular platform of height

0.08. The yon Hann and the approximate Blackman windows have a better

sidelobe behavior. In the analysis of power-law PSD's, it may be desirable to

use windows with a steeper side-lobe decay. The Blackman window can be

modified by including higher-order cosine terms. The coefficients can be

selected in such a way that with m cosinusoids, the frequency response decays

at the rate 1fl-(2m+l).Two examples of modified Blackman windows are given

below.

Modified Blackman : order 2, highest term cos(4_)
Coefficients (0.375, 0.500, 0.125) ~f-5

Modified Blackman :order 4, highest term cos(8_)
Coefficients(0.2734375, 0.4375000, 0.2187500, 0.0620000, 0.0078125) _f-9

The time-domain shape of these windows is shown in Fig. 7.1. The response

of the modified fourth-order Blackman window is shown in Fig. 7.2 with its
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FIGURE 7.1. Time windows of order 1, 2 and 4 with good sidelobe behavior

derived from the Blackman window are shown on a support (-0.5,0.5). The
order 1 window is just the von Harm or Harming window with a frequency
response decaying at 60 dB/decade. The order 2 and 4 windows have a
response decaying at 100 and 180 dB/decade respectively. The effective
temporal width of these windows is one-half to one-fourth of their support.
For a frequency resolution comparable to the rectangular, data length should
then be two to four times longer.
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constrained side-lobe behavior may be useful in spectral analysis of velocity
data with power-law spectra, and in suppressing the smearing of ground
clutter in radar signal spectra by using longer record lengths.
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_f-9 decay rate. Simulations indicate that windows with well constrained

sidelobes are effective in reducing the influence of trends, but require at least

two to four times longer data segments. It may be surmised that the use of the

modified Blackman windows, or any other suitable window, in the time-

averaged periodogram method can contain the effect of fading ground clutter

to near zero-frequencies.

We now briefly mention the effect of coherent integration of radar signals in

PSD estimation with periodograms [Rastogi, 1983]. In coherent integration, I

successive samples of z[i] at a time spacing TI are averaged with uniform

weights (1/I) and the averaged sequence y[i] is re-sampled with time spacing

T=ITI. The periodogram Py(f) of y[k]=y(kITt)=y(kT) is formed at K

frequencies in the Nyquist interval _+0.5(KT) -1 using the DFT.

The consequence of time averaging is to multiply the original periodogram

Pz(f) with a filter weighting function

IH(f)l 2 = 1 sin2(_fTl I) [7.1]

12 sin2(gfTl)

This filter function has maxima at multiples of 1/FI. Between any two

maxima, there are (I-2) secondary peaks with nulls at multiples of 1/0TI).

The principle lobe at zero frequency, with adjacent nulls at -+I/OTI), is twice

as wide as the Nyquist interval. Echoes with Doppler shifts near the end

points of the Nyquist interval are weighted down by nearly -4dB. A

correction for this effect must be applied in spectral-moment estimation. Any

components of Pz(f) outside the Nyquist interval are weighted by the filter

function of equation [7.1], and would then appear aliased in Py(f). Hence the

coherent integration scheme is not very successful as an anti-aliasing filter.

Coherent integration does provides a computationally efficient means,

through simple accumulation, of implementing a 'poor' matched filter for

radar signals. Its principal advantage is in reducing the overall data rate by a

factor I. The received signal z(t) is originally constrained by the receiver

bandwidth B. Sampling at interval Tl>>B-I aliases the entire received signal,
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including noise and interference, into the frequency interval _+0.5(TI) -1. This

frequency interval is further reduced to the Nyquist interval +0.5(IT0 -I

through coherent integration. Obviously, the white-noise power outside the

Nyquist interval is rejected by weighting with the filter function and its

contribution is reduced by -1/I. But within the Nyquist interval, the Doppler

shifted signal peaks and white noise component are both weighted by the

same filter function. Hence the detectability of spectral peaks, as discussed in

Sec. 4, is not improved in any tangible way through coherent integration and

there is definitely some impairment near the ends of the Nyquist interval.

8. Least Square8 Estimation and Spectral Parameters

The general problem of estimating parameters from observations or data can

only be examined within the frame work of a model. For any choice of

parameter values, the model produces an output, which generally differs

from observations. That choice of parameter values for which the model

output matches the observations, in some statistical sense e.g. by minimizing

the mean squared error (m,s.e.), can be said to agree with or derived from

the observations. The behavior of m.s.e, as a function of model parameters

may be visualized as an error surface. The best choice of parameters

corresponds to the true or global minimum on this surface. An exhaustive

search for the true minimum is impractical, so an acceptable local minimum

is sought only within a limited region of parameter values.

With an initial guess of parameter values, it is possible to seek a local

minimum in m.s.e, by using any of the several adaptive search strategies e.g.

by changing parameters in the direction in which the m.s.e, changes most

steeply. Excellent discussion of least mean square (1.m.s.) algorithms may be

found in Alexander(1986), Bard(1974), and Widrow and Stearns(1985).

Sato and Woodman(1982) have adapted Bard's formulation to spectral

parameter estimation in radar experiments at Arecibo. Their approach is
discussed below.

Suppose the observations X = x(k) represent an N-point vector. The model

input is a parameter vector P = p(j) with J points. The model output Y(P) =

y(k,P) is an N-point vector that depends on P. The error vector 8(P) =
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e(k,P) varies with observation index k and depends on the choice of P. Since

e(k,P) may be either positive or negative, we seek to minimize its

accumulated square value (which divided by K is the m.s.e.)

N

e(P) = [ y(k,P) - x(k) ]2
k=l

[8.11

with respect to P. Equating the derivative of e(P) with respect to P gives J

conditions for each of its component p(j); j=1,2...J

N 8y(k,P)
[ y(k,P)- x(k) ] = 0 forj=l,2..J

k=l 8PfJ)
[8.2]

Now J linear equations in as many unknowns can be solved by matrix

methods, but eqns [8.2] contain nonlinear terms of the form y 8y/Sp. The

equations may be linearized locally, about a parameter vector Po, through a

simple perturbation scheme. Then retaining linear terms in a Taylor series

about Po, gives P = Po + _P. The model output y(k,P) can now be written as

J 8y(k,Po)

y(k,P) = y(k,Po) + _ Op(i) _p(i) = 0 for k=l,2..N
i--I

[8.3]

Substituting for y(k,P) in the condition [8.2] for minimum m.s.e., we obtain

the following J equations for each j=l,2,..J

N J 8y(k,P0) 8y(k,P0) _Sp(i) = 0 where j=l.2..J
C (j) + _ _ 8P(J) 8p(i)

k=! i=l

[8.4]

where the J constant terms C(j) are given by

N 8y(k,P0) where j=l.2..J [8_5]
"C (j) = _ [ y(k,Po) - x(k) ] 8P(J)

k=l

Eqn [8.4] can be more effectively written in the matrix form
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C+DSP=0
K

or c(j) = _ d(i,j) _p(i) where j=l,2..J
j=-l

[8.6]

Here C is a [Jxl] matrix defined in eqn [8.5], D is a [JxJ] matrix denoting the

product of derivatives of model output y in eqn [8.4], and 5P is a [Jxl] matrix

which denotes the desired change in P about P0 to locally minimize the

m.s.e. This equation can be inverted to yield,

5P= - D 1C [8.7]

where D-1 is the inverse of the [3xJ] matrix D evaluated through any of the

conventional numerical methods [see Press et al, 1986], since D does not have

any special properties.

This gives the perturbation _SPabout P0 to minimize the m.s.e. We are now at

a new value of P0 and the process can be iterated to find a parameter vector

which either stabilizes the m.s.e, near a local bottom of the error surface, or

brings it below an acceptable threshold corresponding to a 'good' estimate of

parameter vector. It should be emphasized that the above scheme does not

warrant a solution, though it often gives one for a reasonable initial guess P0,

and it is extremely computation intensive.

In the m.s.e, spectral parameter scheme implemented for the 430 MHz

Arecibo radar by Sato and Woodman (1982), the observation vector is the

DFF of the time averaged periodogram sequence. The model output vector is

then in the form of a distorted ACF sequence. In the model, MST radar

signals s(t) have one or two Doppler shifted components, each with three

ACF or PSD parameters for an assumed Gaussian shape in the PSD. Fading

ground clutter c(t) also has three similar parameters. But due to its narrow,

symmetric, and possibly unknown shape in the PSD, it is overspecified by the

coefficients of a third order polynomial in (x): and a small Doppler shift.

With a noise platform included, the parameter vector has a length of 7(10)

for 1(2) Doppler peaks. The distortion of ACF and PSD has been outlined in
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Sec.6. The m.s.e, search is set about an initial guess of parameters obtained

either by an ad-hoc analysis of spectra, or using the ACF method discussed in

the next section. The m.s.e, implementation can routinely detect signals up to

50 dB below ground clutter, with a typical radial velocity uncertainty of 0.1-

0.2 m/s.

The ad-hoc analysis, instead of estimating the parameters of ground clutter,

merely removes it on the basis of its approximate symmetry in PSD estimates

about zero Doppler shift. Estimates of Doppler shift and other parameters

can be considerably improved by using time and range continuity of

measured velocity, statistical editing of spectra, and by a statistical analysis of

all the available data in several passes (Rastogi, 1984). These steps can be

used to set a narrow range of parameters P for the m.s.e, method. Adaptive

processing of spectral records using the available prior statistical

information, e.g. tracking Doppler peaks in range, searching for parameters

near a median Doppler-shift profile, and even using 'future' data, may speed

up spectral-moment processing.

9. Spectral Mom¢nt Estimation via Correlation Function

Consider a complex wide sense stationary process z(t) with power P, PSD

S(f) and ACF R(x). For simplicity z is omitted as a suffix. In as much as

S(f)/P has all the properties of a probability density function, and S(f) --

{R(z) }, the non-central moments of S(f) and parameters derived from these

are simply related to the successive derivatives of R(x) at x--0. This method

was originally used at Jicamarca for measuring the vertical motions in the F-

region using the incoherent-scatter radar technique and later applied to the

first middle-atmospheric radar experiments by Woodman and Guill6n

(1974). A complete statistical analysis of this approach has been

independently given by Miller and Rochwarger (1972).

Details can be seen by considering R(x) = B-l{R(x)} as in eqn. [2.4]. Using the

series expansion of exp(t2_fx) and evaluating the successive derivatives of

R(x) at x--4), we have
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R(0)=f__s(f) df= s(0) [9.1]

R'(0) = (t 2_) fo* f S(f) df = (t 2x) s(l) [9.2]
d.

R"(0) = (t 2x) 2 f** f2 S(f) df =(t 2_) 2 s(2) [9.3]
J_

We find that these derivatives are related to the successive spectral moments,

s(0), s(O and s(2). s(0) is merely the signal power P. The other two spectral

parameters of interest are the center frequency or the Doppler shift fc, and

the spread oe of the PSD about it. As outlined in Sec. 2, these are related to the

central moments of the PSD. In terms of the noncentral moments s(1) and s_),

fc = sO)/P [9.4]

= s(2)/P- fc2 [9.51

which shows that uncertainties in a lower-order moment effects all higher-

order parameters.

An interesting case arises when the Doppler-shifted component in the PSD is

expressible through a simple shape such as the Gaussian. In terms of a

normalized Gaussian function N(fc, of_) with mean fc and variance of 2, the

PSD becomes S(f) = PN(fc, of 2). The ACF R(x) is generally complex with a

Hermitian symmetry. Its real part and magnitude are even, and the imaginary

part and phase are odd functions of the lag x. For the Gaussian PSD,

R(x) = P exp(t 2_ fez) exp{- _2x) 2 'ta o_} [9.6]

Comparing it with the polar form IR(x)l exp{t ¢(x)} of the ACF we see that

the phase 0(x) increases linearly with lag x and the mean frequency fc. The

magnitude IR(x)l has a Gaussian shape which can be approximated by a
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parabola for small x. From just two ACF values at zero lag and a small lag x,

we find P = R(0), and

(2=) fc = +(_) / x [9.7]

(2g) 2 of2 = 2 x-2 {1 - IR(x) 1/ P } [9.8]

Fig. 9.1 shows how the spectral parameters are related for the ACF and PSD.

The effect of two Gaussian components in signals scattered from two

turbulent layers has been considered by Rastogi and Bowhill (1976).

The ACF approach provides a clever method for finding spectral parameters

if z(t) contains only an atmospheric component s(t) conforming to the simple

models just discussed. Otherwise spectral contributions to z(t) from noise

n(t), ground clutter c(t) and interference i(t), are all included, by definition,
in the ACF R(x). We now use an appropriate suffix to identify these

components. Corrections to remove their effect require ACF measurements

at several lags.

An additive white noise n(t), merely adds a spike of size Pn to Rz(0) at zero

lag. Then Ps=Pz-Pn . A correction for Pn can be applied by using two or more

small non-zero lags of R(x) to estimate and remove the noise spike Rz(0).

Ground clutter c(t) has an effect on the estimation of fc only through the

error it introduces in the power estimate. It contributes a nearly constant

platform Re to Re(x) at small lags due to its long fading time. Its contribution

may be effectively removed by d.c. subtraction from z(t) [See Fig. 9.2].

Statistical errors in parameter estimates obtained by the ACF method are

discussed in detail by Miller and Rochw_rger (1972). The following analysis

of the uncertainty in Doppler estimation is, however, quite instructive.

Consider K samples of a complex, zero-mean Gaussian process z(t) = x(t) + j

y(t) with a sampling interval T. If the variance of z(t) is o 2, identified also as

its power P, then the signal power PK estimated from K samples as

<z[k]z*[k]> has the statistics E[PK] = 02 and var[PK] = o_/K. Hence PK is

unbiased and its statistical error P/_/K decreases with large K. Next we

estimate R(T)=R[1] at the first sampled lag index as <z[k]z*[k+l]> using
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FIGURE 9.1 : A hypothetical PSD and the corresponding ACF for zero
Doppler shift are shown in (a) and (b). The effect of a slight Doppler shift is
shown in (c) and (d). The area under the PSD and the ACF at zero lag are
equal to the signal power. The frequency width of the PSD and the relative
value of ACF magnitude at a small lag are related. When the PSD is Doppler
shifted by a small amount, the ACF becomes complex. Then the shift can be
estimated from the ACF phase at a small lag.
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FIGURE 9.2 : The effect of noise and clutter on the shape of the ACF and
their conritibution to the total power. The effect of noise and clutter can be
effectively removed from the total power using the ACF values measured at a
few key points. The ACF phase still remains linear at small lags, but the
Doppler shift is underestimated unless noise and clutter are removed from
the total signal power. The spectral width is overestimated from the ACF

value at a small lag, unless the noise spike at zero lag is removed.
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either of the two estimates Rtl] or R[2] given in eqns [5.1] and [5.2]. The

biased estimate R[21is preferable for reasons discussed earlier, but the use of
R[ 1]is more convenient. For small T, the K sample estimate OKof _ is

K-I

_K(T) *, tan _K[1] = {[K-l] p}-I _ y[k] x[k+l] - x[k] y[k+l]
k=l

[9.9]

This estimate is unbiased due to the use of R[H. Its variance-involves a

moment of the form E[abcd] of four zero-mean Gaussian variables. Using a

result due to Isserlis and Hotelling (see e.g. Papoulis, 1983) the fourth

moment reduces to E[abcd] = E[ab] E[cd] + E[ac] E[bd] + E[ad] E[bc]. The

final result,

var{¢K(T)} _- { p2_ IR(T)I 2} / 2 K IR(T)I 2 [9.10]

shows that at small lags the uncertainty in phase estimate is quite sensitive to

the relative magnitude of the ACF. The corresponding statistical error in the

radial velocity for a radar wavelength _. in terms of the normalized

autocorrelation magnitude p or IR(T)/R(0)I is

cry _-__1 _-o I_F-P 2 [9.11 ]
2_ 4nT P

For a 50 MHz radar, with T=0.25 sec, p=0.5, and K=100, we find that the

radial velocity can be measured with a standard deviation of 0.23 m/s. With

p=0.8 the figure improves to 0.1 rn/s.

The ACF method provides a relatively fast means of estimating the spectral

moments for clean radar signals. Due to the ease of its implementation, it is

suited to real time estimation of spectral moments. Statistical averages of

these moments may also serve as an initial guess in the m.m.s.e, approach.

10. Spe,ctral Analysis by Time Series Models and Maxim_lm Entropy Method

Methods discussed so far for estimating the PSD S(f) of a complex random

process z(t), from its uniformly-spaced samples z[k], make some unrealistic
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assumptions about extension of data or its ACF R(x). The DFT assumes a

periodic extension of data. In methods that use the ACF, windowing or

truncation assumes zero correlation beyond a convenient maximum lag. J. P.

Burg has proposed a method which circumvents these objections by seeking

an extension of the ACF at measured lags that maximizes the entropy (in an

Information-theoretic sense) of the observed process [see Childers, 1978].

Alternatively, one seeks to extend the process or its ACF from limited

observations, using suitable time-series models. These are examined first.

Spectral analysis may be regarded as a filter design problem in which we seek

coefficients h[k] of a feedback filter excited by white noise n[k], so that its

output becomes the observed process z[k]. The filter output is taken as a

linear combinations of the current input, q past inputs, and p past outputs.

Such parametric representation of an observed process is called an

autoregressive moving-average or ARMA model

P q

z[k] = -_ a[i] z[k-i] + _ b[j] n[k-j]
i=l j=0

ARMA(p,q) model [10.1 ]

Recalling that shifting a signal s to the left by an interval iT amounts to

multiplying its Fourier transform by exp(-t2_ifT), the PSD S(f) can be

represented in terms of two polynomials (with b[0]=l),

P q

A(f) = 1 +_ a[i] exp(-t2_ifT)] and B(f) = 1 +_ b[j] exp(-t2_jfT)]
i=l j=l

and using the sampling interval T and noise variance ¢2, as

S(f) = o2T IB(f)12 [10.2]
IA(f)l 2

This representation has q zeros and p poles. Hence we expect the AR model to

be more suitable for representing a process with sharp peaks in the PSD, and

the MA process for a PSD with flat peaks. The ground clutter component c(t)

in radar experiments has a near-ideal representation as a pole. We surmise
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that the Doppler shifted components should require an MA part. An

ARMA(p,q) process can be overdefined in terms of an AR(p') or an MA(q')

process with p'>>p, q'>>q. So a purely AR model, with q=0, may be

adequate for representing PSD of radar signals z(t).

For an AR(p) process z(t), the ACF R[k] is related for lags 0,1,..p through

the Yule-Walker normal equations.

R[0] R[-1] R[-p]

R[1] R[0] R[-p+l]

R[1] R[-1]

R[0] R[-1]

R[p] R[p-1] R[1] R[0]

1

a[1]

a[2] =

a_] _

0

0

0

-0 -

[10.3]

These linear equations involve the (p+l) ACF values arranged as a Toeplitz

matrix. In this matrix form, the same elements appear along a diagonal. In

addition, the elements along cross diagonals have Hermitian symmetry. The

matrix can be inverted through Levinson's recursion in _p2 operations.

Programs for solving these equations may be found in Press et al. (1986) and

Marple (1987). Note that the use of Wiener-Khintchine theorem to f'md the

PSD S(f) would require the ACF values Rim] at all lags. But for an AR(p)

process, the p coefficients suffice through eqn [10.2] for finding the PSD.

The structure of these equations may also be discussed in terms of forward

and backward linear-prediction filters, which given some values of data z[k]

extend these in the both directions. Further discussion may be found in

several excellent papers in Childers(1978), and Marple (1987).

The modified Yule-Walker equations for MA and ARMA models are

nonlinear and inherently difficult to solve for filter coefficients.

Entropy H of a random variable X with a probability density function fx is

defined as the expectation E{-ln fx(x)}. It is a measure of the randomness in

the underlying chance experiment. Maximizing the entropy may yield a

solution in some statistical situations. An interesting example is that of a
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loaded die with an average face value of 3.5, instead of 4.5 for a fair one.

There are infinitely many solutions to the probabilities Pi for the six faces.

Maximizing the entropy H under the constraint of the given average value

can be set up as a nice variational problem. Using the method of Lagrange

multipliers, this gives pi's as a geometric series with a ratio r. The resulting

equations for Pl and r are nonlinear, but can be solved recursively from an

initial guess. The solution is Pl = 0.05435, r = 1.44926. This is not a unique

solution, since changing any two pi's by a small amount +5 is also a solution.

For (N+I) uniformly-spaced samples of a complex, zero-mean, Gaussian

random process, the entropy H is obtained using the joint probability density

function of of 2(N+l) real Gaussian variables. This density involves the

Toeplitz ACF matrix form given in eqn. [10.3], albeit of size (N+I) instead

of (p+l). We denote this matrix by RN as it involves N distinct nonzero lags.

It is also convenient to use the base (2r_) TM for the logarithm. Then the

entropy H becomes 0.5 log{det RN} and it increases with N, eventually

becoming infinite. We deal with the entropy rate h defined as h = H/(N+I)

which becomes 0.5 log{(det RN)I/_+I)}. In the limiting case of infinite N, it

can be shown from that for the Toeplitz form of RN, the entropy rate h
reduces to

0.5/Th = -0.5 log T + 0.5T log S(f) df
J-0.5/T

[10.41

where the integral is over the Nyquist interval. Complicated details leading to

this result may be found e.g. in Smylie et a1.(1973). We may expand S(f) in a

Fourier series using the ACF values R[k]. The entrotJy rate h may now be

maximized with respect to the unknown ACF values R[k] for Ikl>N under the

constraints that the first (N+I) values of ACF, including the zero lag, are

known from the data. This difficult exercise, as in the loaded-die problem,

does not warrant a unique solution. The final result expressed in the form of
a PSD estimate is that
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s(f) - [10.51

I1 + _'_ a[k] exp(-1. 2x fkT)
k=l

This result is exactly the same as the PSD of an AR(p) process given in eqn

[10.2] with the moving-average order q set to zero and the numerator

polynomial IB(f)12 = 1. The p coefficients a[k] are the same as for the AR(p)

model obtained by solving the Yule-Walker equations [10.3]. Hence the

maximum entropy method (MEM) is equivalent to the AR(p) model for

equispaced samples of a complex Gaussian process.

If the process is not Gaussian, then the final result in eqn [10.5] for entropy

rate would not hold. MEM still will give a result, but it may not be a

representative estimate of the PSD for the process. We also remark that

though we have shown eqn [10.5] in the AR form, actual implementations of

MEM are rather different and take the form of designing a linear-prediction

filter. Computer programs for MEM may be found in Press et al. (1986) and

in Marple (1987).

A fundamental problem in implementing the above methods is that of finding

the order p of the process. Use of an incorrect order give larger statistical

errors. The order must be found empirically for each class of processes. In a

recent experimental and numerical study, Klostermeyer (1986) has

compared the performance of periodogram, MEM and maximum likelihood

method (MLM) for PSD estimation of ST signals observed with the 53.5

MHz SOUSY radar. It was found that for SNR of 0.3 to 10, MEM and MLM

give better estimates of Doppler shift. The optimum order of the MEM filter

is N3+l with a sampling time of 0.173 sec, and appears to decrease with the

SNR. Similar studies with other atmospheric radar signals, and of their

statistics, are needed for developing the use of MEM and AR PSD models.
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